姓名:王福军;单位:流体机械与流体工程系;职称:教授 1.个人简况 王福军,二级教授、博士生导师、国务院政府特殊津贴专家、教育部国家高层次人才计划特聘教授,现任北京市供水管网系统安全与节能工程技术研究中心主任、中国电机工程学会水电设备专业委员会副主任、中国农业机械学会排灌机械分会副主任、水利部标准化工作专家委员会专家、全国泵标准化技术委员会、ISOTC339国内专家委员会委员等。出版学术著作与教材6部,发表学术论文300余篇,其中SCI和EI收录229篇,获得国家发明专利31项。获国家科技进步奖二等奖(第1完成人)、教育部科技进步奖一等奖(第1完成人)、中国水利学会大禹水利科技奖一等奖(第1完成人)、国家级一流本科课程(主持人)。 2.学习与工作经历 1984年、1987年和2000年分别在新葡萄8883官网AMG水利系和清华大学力学系获得学士、硕士和博士学位;1987~1997年任北京农业工程大学新葡萄8883官网AMG助教、讲师和副教授;1997年至现在任新葡萄8883官网AMG新葡萄8883官网AMG教授;2014年至现在任北京市供水管网系统安全与节能工程技术研究中心主任。2001年5月至2002年11月在英国Swansea University从事博士后研究;2002年12月至2015年3月任新葡萄8883官网AMG新葡萄8883官网AMG院长。 3.研究领域 (1)计算流体动力学 (2)水泵与水泵站 (3)水轮机与水电站 (4)水力机械泥沙磨蚀 (5)流体机械 4.主要科研项目 (1)国家自然科学基金重点项目(编号52539006):高速水流条件下水力机械泥沙与空化耦合磨蚀机理与调控研究,2026.01-2030.12,230万元,主持人 (2)国家自然科学基金(联合基金)重点项目(编号U22A20238):黄河流域水泵磨蚀与空蚀耦合作用机理及控制,2023.01-2026.12,255万元,主持人 (3)国家自然科学基金重点项目(编号51836010):大功率离心泵启停过程中失速瞬变特性研究,2019.01-2023.12,300万元,主持人 (4)国家自然科学基金重点项目(编号51139007):大型离心泵系统压力脉动与水力激振特性研究,2012.01-2016.12,295万元,主持人 (5)国家自然科学基金面上项目(编号51779258):泵站进水池表面旋涡与悬移质泥沙耦合作用对水泵失速影响研究,2018.01-2021.12,主持人 (6)国家自然科学基金面上项目(编号51079151):流道喷砂与涂层对水泵压力脉动特性影响研究,2011.01-2013.12,主持人 (7)国家自然科学基金重大研究计划面上项目(编号91010003):大型水轮机组水力激振条件下的叶片疲劳特性研究,2010.01-2010.12,主持人 (8)国家自然科学基金面上项目(编号50779070):流固耦合界面模型及其在水泵非稳定特性分析中的应用研究,2008.01-2010.12,主持人 (9)国家自然科学基金重大研究计划面上项目(编号90510007):大型水轮机组水力激振问题的动力学特性研究,2006.01-2008.12,主持人 (10)国家自然科学基金面上项目(编号50479008):水力机械湍流涡及湍流压力脉动的数值计算,2005.01-2005.12,主持人 (11)国家自然科学基金面上项目(编号10372114):结构在灾害荷载作用下破坏的新计算模式研究,2004.01-2006.12,主持人 (12)北京市自然科学基金重点项目(编号3071002):南水北调大型高扬程水泵机组水力激振及运行稳定性研究,2007.01-2009.12,主持人 (13)北京市自然科学基金面上项目(编号3182018):离心泵旋转失速传播机理及预测模型研究,2018.01-2020.12,主持人 (14)北京市科技计划课题(编号Z181100005518013):基于叶片载荷控制的智能污水泵系统研制,2018.11-2021.05,220万元,主持人 (15)国家科技支撑计划课题(编号2015BAD20B01):大功率灌排泵研制与开发,2015.04-2018.03,935万元,主持人 (16)国家重点研发计划课题(编号2022YFC3204604):南水北调东线泵闸工程多维输水安全与经济运行模型,2022.11-2025.12,300万元,主持人 (17)北京空间飞行器总体设计部(编号501-01-2013-0032):单相流体回路水锤效应及防护技术研究,2013.11-2014.12,40万元,主持人 (18)嘉兴市水利局、海宁市水利局委托项目:扩大杭嘉湖南排后续东部通道工程(麻泾港枢纽工程)水力过渡过程研究,2022.11-2025.11,180万元,主持人 (19)东阳市水务投资集团有限公司委托项目:东阳市石马潭水库工程水泵模型开发、制造、试验项目,2025.06-2028.12,573万元,主持人 5.获奖情况 (1)国家科技进步奖二等奖:大型灌溉排水泵站更新改造关键技术及应用,2017.12(排名1) (2)水利部大禹水利科技奖一等奖:大型灌溉排水泵站节能与稳定运行关键技术研究及应用,2016.10(排名1) (3)教育部科技进步奖一等奖:大流量双吸离心泵压力脉动调控与节能关键技术及应用,2014.01(排名1) (4)“爱思唯尔中国高被引学者”,2022年至今连续多年 (5)国务院政府特殊津贴专家,2016.12 (6)教育部国家高层次人才计划特聘教授,2012.10 (7)江苏省科技进步奖二等奖:极端工况大功率混流泵高效稳定运行关键技术及应用,2024.10(排名2) (8)山东省科技进步奖二等奖:调水工程关键技术研究及应用,2019.02(排名2) (9)国家级一流本科课程:水泵与水泵站,2020.11(排名1) (10)北京市优秀教材:水泵与水泵站,2021.03(排名1) (11)高等教育国家级教学成果奖二等奖:突出农工交融的农业院校水利工程卓越人才培养体系创建与实践,2018.12(排名3) (12)北京市高等教育教学成果奖一等奖:突出农工交融的农业院校水利工程卓越人才培养体系创建与实践,2018.4(排名3) (13)北京市高等教育教学成果奖二等奖:“工程导向、科教融合、思政铸魂”的水利装备创新人才培养模式构建与实践,2022.10(排名1) (14)北京市精品课程:流体力学,2009.04(排名1) (15)普通高等教育国家级规划教材:水泵与水泵站,2008.11(排名1) (16)北京市精品教材:水泵与水泵站,2006.12(排名1) (17)北京市精品教材:计算流体力学分析——CFD软件原理与应用,2006.12(排名1) (18)教育部新世纪优秀人才支持计划,2005.10 (19)宝钢优秀教师,1997.12 (20)北京市优秀青年教师,1997.9 6.主要学术兼职 (1)中国电机工程学会水电设备专业委员会副主任 (2)中国水利学会泵及泵站专业委员会副主任 (3)中国农业机械学会排灌机械分会副主任 (4)中国工程热物理学会流体机械分会委员 (5)水利部标准化工作专家委员会专家 (6)中国南水北调集团科技委委员 (7)全国泵标准化技术委员会委员 (8)ISO TC339国内专家委员会委员 (9)《Engineering Computations》编委 (10)《Journal of Hydrodynamics》执行编委 (11)《International Journal of Fluid Engineering》编委 (12)《水利学报》编委 (13)《农业机械学报》编委 (14)《排灌机械工程学报》副主编 7.主要专著与教材 [1] 王福军,水泵与泵站流动分析方法,中国水利水电出版社,2021(获国家科学技术学术著作出版基金) [2] 王福军,计算流体动力学分析——CFD软件原理与应用,清华大学出版社,2004(第一版)/2026(第二版) [3] 王福军,水泵与水泵站,中国农业出版社,2005(第一版)/2011(第二版)/2021(第三版) [4] 王福军,AutoCAD R12/13应用C程序设计——机械CAD编程方法与实例,电子工业出版社,1995 8.部分学术论文 [1] Wang C, Wang B, Wang F*, Wang H, Hong Y, Wu Ji, Li D, Shao C. On the scale effect of energy conversion in large-scale bulb tubular pump: Characteristics, mechanisms and applications. Energy, 2024, 292, 130528. [2] Tang Y, Wang F*, Wang C, Ye C, Qu Q, Xu J. Investigation on the influence of seal clearance leakage on the rotating stall characteristics for a centrifugal pump. Physics of Fluids, 2024, 36, 025176. [3] Ye C, Tang Y, An D, Wang F*, Zheng Y, van Esch B P M. Investigation on stall characteristics of marine centrifugal pump considering transition effect. Ocean Engineering, 2023: 114823. [4] Ye C, Wang C, Yan H, Wang F*, Zheng Y, van Esch B P M. Investigation on transition characteristics of laminar separation bubble on a hydrofoil. Physics of Fluids. 2023, 35: 105154. [5] Zhao H, Wang F*, Wang C, Lu H, Zhu B. Study of driving force characteristics in the formation of dominant unstable flow events in water jet propulsion pumps. Ocean Engineering, 2023, 289: 116291. [6] Zhao H, Wang F*, Wang C, Lu H, Zhu B. Generation mechanism and control methods of secondary flows in the impeller of axial flow pumps. Physics of Fluids, 2023, 35: 065127. [7] Zhao H, Wang F*, Wang C, Wang B. Investigation on the hump region generation mechanism of pump mode in low-head pumped hydro-storage unit. Physics of Fluids, 2022, 34: 115148. [8] Zhao H, Wang F*, Wang C, Ye C, Yao Z, Zhong Q. A modified VLES model for simulation of rotating separation flow in axial flow rotating machinery. Journal of Hydrodynamics, 2022, 34(4): 570-584. [9] Wang C, Wang F*, Li C, Chen W, Wang H, Lu L. Investigation on energy conversion instability of pump mode in hydro-pneumatic energy storage system. Journal of Energy Storage, 2022, 53: 105079. [10] Zi D, Shen L, Wang F*, Wang B, Yao Z. Characteristics and mechanisms of air-core vortex meandering in a free-surface intake flow. International Journal of Multiphase Flow, 2022, 152: 104070. [11] Wang C, Wang F*, Chen W, He Q, Chen X, Zhang Z. A dynamic particle scale-driven interphase force model for water-sand two-phase flow in hydraulic machinery and systems. International Journal of Heat and Fluid Flow, 2022, 95: 108974. [12] Wang C, Wang F*, Wang H, Zhao H, Yao Z, Xiao R. Computational method and control strategy of rotating separation flows in hydraulic machinery. Journal of Hydrodynamics, 2022, 34(6): 1006-1020. [13] Zhao H, Wang F*, Wang C, Chen W, Yao Z, Shi X, Li X, Zhong Q. Study on the characteristics of horn-like vortices in an axial flow pump impeller under off-design conditions. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1613-1628. [14] Tang Y, Wang F*, Wang C, Hong Y, Yao Z, Tang X. Low-frequency oscillation characteristics of flow for NACA66 hydrofoil under critical stall condition. Renewable Energy, 2021, 172: 983-997. [15] Ye C, Wang C, Zi D, Tang Y, van Esch B P M, Wang F*. Improvement of the SST γ-Reθt transition model for flows along a curved hydrofoil. Journal of Hydrodynamics, 2021, 33(3):520-533. [16] Zi D, Wang F*, Wang C, Huang C, Shen L. Investigation on the air-core vortex in a vertical hydraulic intake system. Renewable Energy, 2021, 177: 1333-1345. [17] Wang C, Wang F*, Xie L, Wang B, Yao Z, Xiao R. On the vortical characteristics of horn-like vortices in stator corner separation flow in an axial flow pump. Journal of Fluids Engineering, Transactions of the ASME. 2021, 143: 061201. [18] Wang C, Wang F*, An D, Yao Z, Xiao R, Lu L, He C, Zou Z. A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers. Science China (Technological Sciences); 2021, 64(4): 898-918. [19] 王超越,王福军*, 安东森, 姚志峰, 肖若富, 陆力, 何成连, 邹志超. 广义交替加载技术及其在离心泵和混流泵叶轮逆向设计中的应用. 中国科学: 技术科学, 2021, 51(5): 613-614. [20] Wang C, Zeng Y, Yao Z, Wang F*. Rigid vorticity transport equation and its application to vortical structure evolution analysis in hydroenergy machinery. Engineering Applications of Computational Fluid Mechanics, 2021, 15:1: 1016-1033. [21] Wang C, Wang F*, Tang Y, Zi D, Xie L, He C, Zhu Q, Huang C. Investigation on the phenomenon of flow deviation in the S-shaped discharge passage of a slanted axial-flow pumping system. Journal of Fluids Engineering, Transactions of the ASME. 2020, 142: 041205. [22] Wang C, Wang F*, Tang Y, Wang B. Investigation on the horn-like vortices in stator corner separation flow in an axial flow pump,Journal of Fluids Engineering, Transactions of the ASME, 2020, 142: 071208. [23] Zi D, Xuan A, Wang F*, Shen L. Numerical study of mechanisms of air-core vortex evolution in an intake flow. International Journal of Heat and Fluid Flow, 2020, 81:108517. [24] Wang C, Wang F*, Li C, Ye C, Yan T, Zou Z. A modified STRUCT model for efficient engineering computations of turbulent flows in hydro-energy machinery. International Journal of Heat and Fluid Flow, 2020, 85: 108628. [25] Wang C, Wang F*, Ye C, Wang B, Zou Z. Application of the MST turbulence model to predict the tip leakage vortex flows. Engineering Computations, 2020, 38(1): 344-353. [26] Wang C, Wang F*, Wang B, Tang Y, Zhao H. A novel Omega-driven dynamic PANS model. Journal of Hydrodynamics, 2020, 32(4): 710-716. [27] Ye C, Wang F*, Wang C, van Esch B P M. Assessment of turbulence models for the boundary layer transition flow simulation around a hydrofoil. Ocean Engineering, 2020, 217: 108124. [28] Wang L, Wang F*, Huang J. Numerical investigation of filling transients in small-scale pipelines with submerged outlet. Journal of Hydrodynamics, 2019, 31(1): 145-151. [29] 李嘉兴, 王福军*, 陈鑫. 基于双流体模型的尊村泵站双吸离心泵泥沙磨损. 科学通报, 2019, 64(36): 3856-3866. [30] Yao Z, Yang M, Xiao R, Wang F*. Influence of wall roughness on the static performance and pressure fluctuation characteristics of a double-suction centrifugal pump. Journal of Power and Energy, 2018, 232(7): 826-840. [31] Wang L, Wang F*, Lei X. Investigation on friction models for simulation of pipeline filling transients. Journal of Hydraulic Research, 2018, 56(6): 888-895. [32] Wang L, Wang F*, Karney B, Malekpour A. Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 2017, 55(5): 647-656. [33] Zhou P, Wang F*, Mou J. Investigation of unsteady flow in a centrifugal pump impeller under different stall conditions. Engineering Computations, 2017,34(6):1989-2000. [34] Zhou P, Wang F*, Yang Z, Mou J. Investigation of rotating stall for a centrifugal pump impeller using various SGS models. Journal of Hydrodynamics, 2017, 29(2): 235-242. [35] Yao Z, Yang Z, Wang F*. Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller, Engineering Applications of Computational Fluid Mechanics. 2016, 10(1): 454-467. [36] Zou Z, Wang F*, Yao Z, Tao R, Xiao R, Li H. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition. Nuclear Engineering and Design. 2016, 310: 410-417. [37] Yao Z, Wang F*, Dreyer M, Farhat M. Effect of trailing edge shape on hydrodynamic damping for a hydrofoil. Journal of Fluids and Structure, 2014, 51: 189-198. [38] Qu L, Norberg C, Davidson L, Peng S, Wang F*. Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. Journal of Fluids and Structures. 2013, 39: 347-370. [39] Yang Z, Wang F*. A dynamic mixed nonlinear subgrid-scale model for large-eddy simulation. Engineering Computations, 2012, 29(7): 778-791. [40] Yang Z, Wang F*. Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller, Chinese Journal of Mechanical Engineering, 2012, 25(5): 911-918. [41] Ma J, Peng S, Davidson L, Wang F*. A low Reynolds number variant of a partially averaged Navier-Stokes model for turbulent. International Journal of Heat and Fluid Flow, 2011, 32(3): 652-669. [42] Yao Z, Wang F*, Qu L, Xiao R, He C, Wang M. Experimental investigation of time-frequency characteristics of pressure fluctuations in a double-suction centrifugal pump. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133: 101303. [43] Ma J, Wang F*, Yu X, Liu Z. A partially-averaged Navier-Stokes model for hill and curved duct flow. Journal of Hydrodynamics, 2011, 23(4): 466-475. 注:*为通讯作者. 9.人才培养 指导博士生36名(已毕业26名)、硕士生77名(已毕业69名)。先后为本科生主讲《流体力学》、《水泵与水泵站》、《水泵原理及水力设计》等课程,为研究生主讲《计算流体力学》、《流体机械理论与设计》、《流体流动模拟与CFD软件应用》、《水力机械流动理论》和《水动力学与水力机械科学进展》等课程。 10.联系方式 地址:北京市海淀区清华东路17号 邮编:100083 电话:010-62736972 Email:wangfj@cau.edu.cn或wangfujun@tsinghua.org.cn
备注:资料统计日期为2025年9月 |